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ABSTRACT

A CMS approved test for lung cancer is based on tumor-only analysis of a targeted 
35 gene panel, specifically excluding the use of the patient’s normal germline tissue. 
However, this tumor-only approach increases the risk of mistakenly identifying 
germline single nucleotide polymorphisms (SNPs) as somatically-derived cancer driver 
mutations (false positives). 621 patients with 30 different cancer types, including 
lung cancer, were studied to compare the precision of tumor somatic variant calling 
in 35 genes using tumor-only DNA sequencing versus tumor-normal DNA plus RNA 
sequencing. When sequencing of lung cancer was performed using tumor genomes 
alone without normal germline controls, 94% of variants identified were SNPs and 
thus false positives. Filtering for common SNPs still resulted in as high as 48% false 
positive variant calling. With tumor-only sequencing, 29% of lung cancer patients had 
a false positive variant call in at least one of twelve genes with directly targetable 
drugs. RNA analysis showed 18% of true somatic variants were not expressed. Thus, 
sequencing and analysis of both normal germline and tumor genomes is necessary for 
accurate identification of molecular targets. Treatment decisions based on tumor-only 
analysis may result in the administration of ineffective therapies while also increasing 
the risk of negative drug-related side effects.

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 27), pp: 19223-19232

INTRODUCTION

In 2016, the Centers for Medicare and Medicaid 
Services (CMS) authorized coverage of a tumor-only DNA 
sequencing-based test of 35 genes intended to inform lung 
cancer treatment. The test (MolDX: L36194) is defined 
as a “single test using tumor tissue only (i.e., not matched 
tumor and normal) that does not distinguish between 
somatic and germline alterations”. However, this tumor-
only approach has been reported by others to increase 
the risk of mistakenly identifying germline mutations as 
somatically-derived genetic changes and potential cancer 
driver mutations (“false positives”) [1, 2]. Jones et al. [1] 
recently showed that tumor-only sequencing and analysis 
can result in a significant number of inherited germline 

variants being identified as somatic variants. The pitfalls of 
tumor-only sequencing were further demonstrated by Teer 
et al. [2] in their recent investigation of a range of filtering 
methods for tumor-only sequencing. Bioinformatics and 
statistical methods have been developed specifically for the 
purpose of identifying somatic mutations with tumor-only 
sequencing data, including an extension to a well-known 
variant calling algorithm that incorporates new statistical 
and machine learning components [3], as well as a method 
that leverages ancestry information and allele fraction to 
improve the identification of somatic and germline variants 
[4]. While these bioinformatics and statistical methods have 
reduced false positive rates, the rates remain unacceptably 
high for use with tumor-only sequencing in a clinical setting. 
Others have shown that false positive rates associated with 
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tumor-only sequencing can be further reduced by molecular 
pathologist review of all putative somatic variants [1, 5]. 
The problem of identifying mutations of germline origin 
from tumor-only sequencing has recently been highlighted 
[6] and tumor-normal sequencing and analysis was shown 
to be significantly better at identifying inherited cancer 
susceptibility mutations than guideline-based germline 
testing [7].

Based on these concerns of false positives of tumor-
only gene panel analysis, we sought to demonstrate 
(i) the enhanced precision afforded by simultaneously 
analyzing both tumor and germline sequences, and thereby 
improving the confidence with which clinically druggable 
mutations can be identified, (ii) bioinformatic filtration 
of polymorphisms from tumor-only sequence analysis 
does not match the precision of tumor-normal genomic 
analysis, (iii.) mRNA expression of any true somatic 
mutation provides the critical second line of support for 
the mutation’s druggability. In the present study, DNA 
sequencing of tumor and normal germline genomes of the 
35-gene panel authorized for coverage by CMS from 45 
lung cancer patients and 621 total cancer patients with 33 
cancer types was used to quantify the rate of false positive 
tumor somatic variants originating from the use of the 
tumor-only sequencing approach. Potential increase in 
precision stemming from expression analysis of alterations 
in these 35 genes by RNA sequencing was also assessed.

RESULTS

Identification of tumor somatic single nucleotide 
variants (SNVs) 

Whole-genome DNA sequencing of 45 lung cancer 
patients’ tumor and normal (germline) genomes resulted 
in the identification of 802 missense or nonsense protein-
altering SNVs in the panel of 35 genes associated with 
lung cancer etiology. The panel included 25 genes 
considered somatic tumor drivers (tumor driver gene 
panel), and 10 genes known to affect inherited cancer 
risk (inherited risk gene panel; Table 1). Among the 45 
lung cancer patients, the total of 746 SNVs occurred at 
147 unique SNV sites. All 746 variants were present in 
the tumor genomes. Bioinformatic analysis of tumor 
and normal germline DNA sequence showed that 701 
of the 746 SNVs (94%) originated in the germline, and 
the remaining 45 SNVs (6%) originated in somatic 
tissue. Applying the same gene panel to the analysis of 
621 cancer patients’ with 33 cancer types, tumor-normal 
sequencing analysis resulted in the identification of 10,704 
missense or nonsense protein-altering SNVs. There were 
919 unique SNVs sites that contributed to the 10,704 
SNVs identified. Analysis of each patient’s tumor and 
normal germline genome determined that 10,149 (95%) 
of the SNVs were of germline origin, while the remaining 
555 (5%) SNVs were of somatic origin. 

For lung cancer patients, just 8% and 3% of SNVs 
were of somatic origin in the tumor driver gene panel and 
inherited risk gene panels, respectively. Among all cancer 
patients, the percentage of SNVs representing somatic 
changes was 7% and 3% for genes in the tumor driver 
gene panel and inherited risk gene panel, respectively. A 
greater percentage of somatic variants was expected to be 
observed among the 25 genes that are known to harbor 
somatic cancer driver mutations. There was significant 
variation in the number of SNVs observed in each gene. 
The number of unique SNV sites was strongly correlated 
with the size of the gene protein-coding sequence  
(p value < 10–9, R2 = 0.70 for all cancer types). However, 
there was no correlation between the number of germline, 
somatic, or total variants and the size of the gene (all 
p-values > 0.40). The degree of association between each 
gene and the cancer outcomes is a likely determinant of 
the variation in SNV counts observed between genes as 
well as the natural population genetic variation present in 
each gene. Furthermore, specific cancer driver SNVs are 
enriched among the patients. The copy number state of 
each gene was not considered when evaluating the number 
and distributions of somatic and germline variants within 
and between genes. 

The small number of unique variants compared to 
total variants illustrates the presence of common SNVs 
that are observed in many genomes in the study population 
of cancer patients. There were 21 variants that had allele 
frequencies > 0.02 in the sample of 621 cancer patients, 
17 of which were common germline SNPs and 4 of which 
were common somatic driver mutations (2 in KRAS and 
2 in PIK3CA). All 21 common variants are archived in 
the single nucleotide polymorphism database (dbSNP) of 
genetic polymorphisms. Among all patients, 645 of the 
919 total unique variants (70%) were observed only once. 
Three SNVs were of both germline and somatic origin. 

Tumor genome sequencing alone (without 
comparison to the normal germline genome) of the 45 lung 
cancer patients would identify 746 missense and nonsense 
protein-altering SNVs (Table 1). In the context of tumor 
molecular profiling, any SNV of germline origin that is 
categorized to be of somatic origin constitutes a false 
positive result. Without any filtering of putative germline 
variants, false positive rates of approximately 94% are 
expected, given the data presented in Table 1. Figure 1 
shows the number of false positive results that would occur 
among the 45 lung cancer patients (Figure 1A) and the 621 
all cancer patients (Figure 1B) for each gene with three 
different SNV filtering criteria: 1) removing all SNVs that 
are found in the dbSNP database; 2) removing all SNVs 
with reported population allele frequencies ≥ 0.01 (1%); 
and 3) removing all SNVs with reported population allele 
frequency ≥ 0.001 (0.1%). (An additional three SNVs that 
had no reported population allele frequencies but were 
common germline SNVs among the cancer patients and 
were present in dbSNP were also removed). The largest 
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Table 1: Identification of tumor somatic single nucleotide variants (SNVs)

Numbers of variants in patients with all cancer 
types

Numbers of variants in lung cancer patients 
only 

Gene Unique Germline Somatic Unique Germline Somatic
Tumor driver gene panel
ALK 32 1317 (99%) 14 (1%) 6 93 (99%) 1 (1%)
BRAF 23 5 (15%) 29 (85%) 3 0 (0%) 3 (100%)
CDKN2A 22 35 (71%) 14 (29%) 5 2 (40%) 3 (60%)
CEBPA 8 2 (25%) 6 (75%) 0 0 0
DNMT3A 22 12 (52%) 11 (48%) 1 1 (100%) 0 (0%)
EGFR 29 315 (95%) 16 (5%) 6 15 (71%) 6 (29%)
ERBB2 38 921 (98%) 15 (2%) 7 68 (100%) 0 (0%)
EZH2 12 117 (94%) 8 (6%) 1 3 (100%) 0 (0%)
FLT3 25 846 (99%) 5 (1%) 6 64 (98%) 1 (2%)
IDH1 9 85 (94%) 5 (6%) 2 2 (100%) 0 (0%)
IDH2 10 9 (64%) 5 (36%) 0 0 0
JAK2 18 37 (88%) 5 (12%) 0 0 0
KIT 19 138 (93%) 10 (7%) 5 8 (62%) 5 (38%)
KMT2A 57 72 (80%) 18 (20%) 3 2 (67%) 1 (33%)
KRAS 16 3 (4%) 77 (96%) 4 0 (0%) 7 (100%)
MET 28 58 (84%) 11 (16%) 5 7 (87%) 1 (13%)
NOTCH1 59 143 (89%) 17 (11%) 8 6 (75%) 2 (25%)
NPM1 2 1 (50%) 1 (50%) 0 0 0
NRAS 10 1 (5%) 18 (95%) 0 0 0
PDGFRA 24 169 (92%) 14 (8%) 2 9 (100%) 0 (0%)
PDGFRB 28 98 (92%) 8 (8%) 8 11 (92%) 1 (8%)
PGR 31 377 (96%) 15 (4%) 7 21 (91%) 2 (9%)
PIK3CA 31 96 (54%) 82 (46%) 2 6 (86%) 1 (14%)
PTEN 33 780 (97%) 24 (3%) 2 56 (100%) 0 (0%)
RET 22 244 (96%) 9 (4%) 7 21 (100%) 0 (0%)
Total 608 5881 437 90 395 34
Inherited risk gene panel
APC 85 692 (92%) 58 (8%) 7 48 (98%) 1 (2%)
BMPR1A 5 334 (99%) 2 (1%) 1 17 (100%) 0 (0%)
EPCAM 13 464 (100%) 0 (0%) 3 37 (100%) 0 (0%)
MLH1 15 295 (99%) 4 (1%) 4 26 (96%) 1 (4%)
MSH2 23 40 (89%) 5 (11%) 4 5 (100%) 0 (0%)
MSH6 25 273 (98%) 7 (2%) 2 18 (100%) 0 (0%)
PMS2 44 1558 (99%) 10 (1%) 13 110 (97%) 3 (3%)
POLD1 30 208 (97%) 7 (3%) 4 11 (100%) 0 (0%)
POLE 58 398 (96%) 18 (4%) 16 34 (92%) 3 (8%)
STK11 13 6 (46%) 7 (54%) 3 0 (0%) 3 (100%)
Total 311 4268 118 57 306 11
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numbers of false positive results occurred using an allele 
frequency threshold of 0.01. The number of false positives 
could be reduced by half in most genes by reducing the 
allele frequency filtering threshold to 0.001. The precision 
of most publicly-available population allele frequency 
estimates did not exceed 0.0001 so further reductions in 
the population allele frequency threshold had a nominal 
effect on the number of false positive SNVs. 

Excluding all of the SNPs that were present in the 
dbSNP database resulted in the lowest numbers of false 
positive SNVs. However, the improved false positive rate 
came at the cost of an increased false negative rate, as 
many true tumor somatic SNVs were excluded. Excluding 
all SNVs present in dbSNP resulted in 17 false negatives 
among 45 true tumor somatic variants observed in the 45 
lung cancer patients (38%), and 245 false negatives out 
of the 555 true somatic variants among the lung cancer 
patients (44%). Using the 0.001 allele frequency threshold 
filter, there were 41 false positive results (5% of the 746 
total SNVs observed and 48% of the 86 SNVs remaining 
after filtering) and zero false negative results among lung 
cancer patients. The same filtering threshold resulted in 
554 false positive results (5% of the 10,704 total SNVs 
observed and 50% of the 1,107 SNVs remaining after 
filtering) and zero false negative results among all 621 
cancer patients. 

Consequences of the tumor-only sequencing 
approach

After filtering to remove all SNVs with a population 
allele frequency ≥ 0.001, 37 of the 45 lung cancer patients, 
and 472 of the 621 all cancer patients had at least one 
missense or nonsense protein-altering SNV in the panel 
of 35 genes. The 7 lung cancer and 149 total patients 

without SNVs after filtering did not have any true somatic 
variants, showing that the population allele frequency 
filter did not produce false negative results. Figure 2 
shows the number of true positive (i.e., the number of 
tumor somatic SNVs) and false positive SNVs (i.e., the 
number of inherited germline SNVs) for lung cancer 
(Figure 2A) and all patients (Figure 2B) that had at least 
one SNV remaining after filtering. The average numbers 
of SNVs were 1.91 and 1.84, for lung cancer and all 
cancer patients, respectively. One patient with 39 somatic 
SNVs was excluded from Figure 2B for presentation 
purposes. In lung cancer patients, 29 of the 45 patients 
(65%) had at least one false positive SNV, and 15 patients 
had only false positive SNVs (33%), without any true 
positive results. While only 5% of the total SNVs found 
among lung cancer patients were false positives after 
filtering at a population allele frequency of 0.001 (41 false 
positives out of 802 total SNVs discovered), the SNVs 
were distributed across 65% of the patients. The majority 
of the 802 SNVs discovered are common variants that are 
excluded by filtering. These results highlight the impact 
of rare germline mutations on the rate of false positive 
discoveries. In the full study population, 365 of the 
621 patients (59%) had at least one false positive SNV, 
yielding an average of 0.91 false positives per patient. 
Only false positive SNVs, without true positive results, 
were present in 193 of 621 patients (31%). 

False positive SNVs can have a direct detrimental 
impact on patient care. Table 2 shows 12 druggable genes, 
the specific drugs that target each of the genes when they 
are somatically mutated, and the number of patients with 
at least 1 false positive SNV observed in each of the genes. 
Furthermore, the cost and possible adverse health effects 
associated with each drug are shown to illustrate the 
financial and clinical implications of prescribing a drug 

Figure 1: Number of false positive missense or nonsense protein-altering SNVs from tumor sequence analysis of 35 genes in 45 lung 
cancer patients (A) and 621 total cancer patients (B) after filtering of SNVs based on three criteria. False-positive results are defined as 
SNVs found in tumors that are of inherited germline origin. Filters used included the following exclusion criteria: 1) SNPs present in the 
dbSNP database (dbSNP); 2) SNPs with reported population allele frequency ≥ 0.01 (AF ≥ 0.01); and 3) SNPs with a reported population 
allele frequency ≥ 0.001 (AF ≥ 0.001). 
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based on a false positive result. Although these are non-
classic variants, the patient population have often failed 
one or more lines of therapy and their physicians are more 
likely to choose to target these alterations than ignore them 
in this clinical setting.

Expression of somatic single nucleotide variants

RNA sequencing data allowing assessment of the 
expression of the tumor somatic SNVs was available from 
26 lung cancer patients and 378 of all patients. Table 3 
shows the total number of somatic SNVs assessed, the 
number of somatic SNVs that were not expressed, and 
the number of patients with a somatic SNV that was 
not expressed. A significant percentage of SNVs were 
not expressed: 18% (7 out of 39 SNVs) for lung cancer 
patients, and 15% (75 out of 517 SNVs) for all cancer 
patients. There was substantial variation in the percent of 
expressed tumor somatic variants between genes. Nearly 
80% or more of SNVs in FLT3, PDGFRA, PGR, and 
RET were not expressed among all cancer patients. In the 
study population, 9% of lung cancer patients (6 of all 26 
patients with tumor RNA sequencing data) and 13% of 
all cancer patients (51 of 378 total cancer patients with 
tumor RNA sequencing data) had at least one true tumor 
somatic SNV that was not expressed in the messenger 
RNA. There were 4 tumor somatic SNVs in 4 lung cancer 
patients that were not expressed in the twelve genes that 
are targets for specific drugs shown in Table 2. There were 
33 of all cancer patients with tumor somatic SNVs that 
were not expressed in the RNA. Treatment decisions based 
on DNA analysis alone might thus result in administration 
of ineffective therapies. 

There were 3,698 true germline variants across 
all cancer types with RNA sequencing coverage. The 
percentage of germline variants that were not expressed 
was 9% (337 germline variants not expressed of 3,698 

total variants). Among lung cancer patients, 11% of true 
germline variants were not expressed (23 variants not 
expressed of 215 total). 

DISCUSSION

Currently, two sequencing-based approaches are 
available to identify a patient’s tumor somatic variation. In 
the first approach, the tumor DNA representing a targeted 
gene panel, the exome, or whole genome is sequenced, 
and putative germline variation is filtered based on a 
reference genome and the characteristics of the individual 
genomic variants discovered in the tumor (termed tumor-
only analysis). Identification of a genomic variant in 
a population genetic database at an appreciable allele 
frequency is a common filtering criterion for determining 
if a variant is of inherited germline origin [2]. The second 
and more precise approach as shown in this study, is to 
use the patient’s own germline genome as the precise 
control (rather than a reference genome for filtration) 
for distinguishing the inherited germline variants from 
those that are somatically derived (termed tumor-normal 
analysis) [8–10]. A currently CMS approved test for 
informing lung cancer treatment is based on the former 
approach and specifically excludes the use of normal 
tissue (germline information) in determining somatic 
variants. 

In contrasting the two approaches, this study 
analyzed tumor and normal DNA sequencing data from 45 
lung cancer and 621 total cancer patients versus a tumor 
only gene panel approved for coverage by CMS. The 
study demonstrated a 94% false positive rate (95% for all 
cancers) when using tumor-only sequencing to identify 
somatic variants. Even after utilizing multiple methods for 
bioinformatically filtering polymorphisms from the putative 
somatic mutations, the false positive rates still ranged from 
38%–95%. Depending on the method used, excessively 

Figure 2: Number of true positive and false positive results among lung cancer patients (A) and all cancer patients (B) after excluding 
SNVs with a population allele frequency of 0.001 or greater. There were 8 of the 45 lung cancer patients and 149 of the 621 total patients 
not shown in the histograms that had zero variants in the 35 genes after filtering based on allele frequency. 
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Table 2: False positive results in drug targetable genes

Drug Gene targeted 
by drug

Number of patient with at least one false positive 
variant after each SNV filter Approximate

Drug cost per 
patientsa

Warning and precautions (FDA Label)No Filter AF ≥ 0.01 AF ≥ 0.001

All LC All LC All LC

Crizotinib ALK 621 45 50 2 16 0 $18,349.50 Pneumonitis, Hapatic Abnormalities, QT 
Prolongation

Alectinib $15,976.33 Hepatotoxicity, ILD/Pneumonitis, Bradycardia, 
Myalgia, CPK elevation, EFT

Ceritinib $18,964.13 GI toxicity, Hepatotoxicity, ILD/Pneumonitis, 
QT prolongation, Hyperglycemia, Bradycardia, 
Pancreatitis, EFT

Brigatinib $15,960.00 ILD/Pneumonitis, HTN, Bradycardia, Visual 
disturbance, CPK elevation, Pancreatic enzyme 
elevation, Hyperglycemia, EFT

Vemurafenib BRAF 5 0 5 0 2 0 $13,020.94 Hypersensitivity, Dermatologic reactions, QT 
Prolongation, Hepatotoxicity, Ophthalmologic 
reactions, Renal failure, EFT

Dabrafenib $11,412.43 Febrile drug reaction, Hyperglycemia, Uveitis and 
Iritis, G6PD deficiency, EFT

Cobimetinib $7,856.04a Hemorrhage, Cardiomyopathy, Dermatologic 
reactions, Retinopathy and RVO, Hepatotoxicity, 
Rhabdomyolysis, Photosensitivity, EFT

Trametinib $12,450.00 Cardiomyopathy, RPED, RVO, ILD, Skin toxicity, 
EFT

Azacitidine DNMT3A 12 1 12 1 11 1 $2,221.81c Cytopenias, Hepatotoxicity, Renal abnormalities, 
EFT

Decitabine $3,967.37c Cytopenias, EFT

Erlotinib EGFR 303 15 16 0 14 0 $9,390.44 ILD, Renal failure, Hepatotoxicity, GI perforations, 
Bullous and skin disorders, CVA, MAHA, Ocular 
disorders, EFT

Afatinib $9,060.85 Diarrhea, Bullous and skin disorders, ILD, Hapatic 
toxicity, Keratitis, EFT

Gefitinib $9,117.36 Diarrhea, Bullous and skin disorders, ILD, Hapatic 
toxicity, Keratitis, EFT, GI perforation

Neratinib ERBB2 544 37 43 5 24 2 $12,600.00 Diarrhea, Hepatotoxicity, EFT

Lapitinib $6,314.31 Decreased LVEF, Hepatotoxicity, Diarrhea, ILD 
and pneumonitis, QT interval prolongation, EFT

Ruxolitinib JAK2 37 0 23 0 19 0 $12,932.64 Cytopenias, Infection

Imatinib KIT 135 8 13 1 11 0 $23,152.39 Edema, Cytopenias, CHF and LV dysfunction, 
Hepatotoxicity, Hemorrhage, GI perforations, 
Cardiogenic shock, Bullous, Hypothyroidism, EFT

Dasatinib $16,084.02 Myelosuppression, Thrombocytopenia, Fluid 
retention, QT Prolongation, CHF, LV dysfunction, 
MI, EFT

Regorafenib $17,857.80d Hemorrhage, Dermatological toxicity, HTN, 
Cardiac ischemia and infarcation, RPLS, GI 
perforation, Wound healing complications, EFT

Crizotinib MET 58 7 41 5 20 2 $18,349.50 Pneumonitis, Hapatic Lab Abnormalities, QT 
Interval Prolongation, EFT

Cabozantinib $18,191.26 Hemorrhage, GI perforations, Thrombotic events, 
HTN, Diarrhea, PPES, RPLS, EFT

Axitinib PDGFRA 160 9 36 0 13 0 $16,416.28 Hemorrhage, GI perforations, Thrombotic events, 
HTN, Hypothyroidism, RPLS, EFT

Regorafenib $17,857.80d Hemorrhage, Dermatological toxicity, HTN, 
Cardiac ischemia and infarcation, RPLS, GI 
perforation, Wound healing complications, EFT

Axitinib PDGFRB 89 9 42 4 18 3 $16,416.28 Hemorrhage, GI perforations, Thrombotic events, 
HTN, Hypothyroidism, RPLS, EFT

Regorafenib $17,857.80d Hemorrhage, Dermatological toxicity, HTN, 
Cardiac ischemia and infarcation, RPLS, GI 
perforation, Wound healing complications, EFT

Idelalisib PIK3CA 96 6 0 0 0 0 $5,721.26e Cutaneous reactions, Anaphylaxis, Neutropenia, 
EFT



Oncotarget19229www.oncotarget.com

Everolimus $17,013.54 Pneumonitis, Infections, Oral ulceration, EFT

Cabozantinib RET 217 18 22 5 19 5 $18,191.26 Hemorrhage, GI perforations, Thrombotic events, 
HTN, Diarrhea, PRES, RPLS, EFT

Vandetinib $15,445.43 QT prolongation, Skin reactions, ILD, Ischemic 
cerebrovascular events, Hemorrhage, Diarrhea, 
HTN, RPLS, EFT

Total number of unique patients with 
a FP SNV 

621 
(100%)

45 
(100%)

303 
(49%)

23 
(51%)

167 
(27%)

13 
(29%)

AF = population allele frequency; All = patients with all 30 cancer types; LC = lung cancer patients only; ILD = Interstitial lung disease; EFT = Embryofetal toxicity; RVO = 
Retinal vein occlusion; RPED = Retinal pigment epithelial dystrophy; CVA = Cerebrovascular accident; MAHA = Microangiopathic hemolytic anemia; GI = Gastrointestinal; 
LVEF = Left ventricular ejection fraction; MI = Myocardial infarcation; RPLS = Reversible posterior leukoencephalopathy syndrome; PRES = Posterior reversible 
encephalopathy syndrome; HTN = Hypertension (including hypertensive crisis);
aAverage wholesale price for 30 days unless otherwise noted.
bDrug not given continuously.
cSingle cycle based on body surface area of 2.02.
dBased on 21 days on and 7 days off schedule.
eBased on 14 days on and 14 days of schedule.

Table 3: Expression of somatic SNVs
All cancer types Lung Cancer Only

Gene Somatic 
SNVs

Somatic SNVs not 
expressed (%)

Patients with 
not expressed 

SNV

Somatic 
SNVs

Somatic SNVs 
not expressed 

(%)

Patients with not 
expressed SNV

ALK 13 10 (76%) 9 0 0 0
BRAF 24 0 (0%) 0 2 0 (0%) 0
CDKN2A 13 2 (15%) 2 3 0 (0%) 0
CEBPA 5 1 (20%) 1 0 0 0
DNMT3A 11 1 (9%) 1 0 0 0
EGFR 16 1 (6%) 1 6 0 (0%) 0
ERBB2 14 1 (7%) 1 0 0 0
EZH2 8 0 (0%) 0 0 0 0
FLT3 5 4 (80%) 4 1 1 (100%) 1
IDH1 5 0 (0%) 0 0 0 0
IDH2 5 0 (0%) 0 0 0 0
JAK2 5 1 (20%) 1 0 0 0
KIT 8 5 (63%) 5 4 2 (50%) 2
KMT2A 18 2 (11%) 2 1 0 (0%) 0
KRAS 70 2 (3%) 2 6 1 (17%) 1
MET 11 3 (27%) 3 1 1 (100%) 1
NOTCH1 16 1 (6%) 1 2 0 (0%) 0
NPM1 1 0 (0%) 0 0 0 0
NRAS 15 0 (0%) 0 0 0 0
PDGFRA 14 11 (79%) 8 0 0 0
PDGFRB 8 3 (38%) 3 1 1 (100%) 1
PGR 14 13 (93%) 11 1 1 (100%) 1
PIK3CA 75 0 (0%) 0 1 0 (0%) 0
PTEN 23 1 (4%) 1 0 0 0
RET 9 7 (78%) 6 0 0 0
APC 54 4 (7%) 4 1 0 (0%) 0
BMPR1A 1 0 (0%) 0 0 0 0
EPCAM 0 0 0 0 0 0



Oncotarget19230www.oncotarget.com

stringent filtering led to potential false negatives. When 
focusing on a subset of 12 genes targeted by FDA-approved 
drugs, where identification of somatic mutations could 
inform treatment decisions, the percentage of lung cancer 
patients affected by false positive calls ranged from 29%–
51% depending on the method of polymorphism filtration 
used. Further risk of false positive results stem from the 
identification of variants identified from somatic tissue, 
i.e., true somatic mutations misidentified as deleterious 
(inherited) germline variants in such genes as BRCA1, 
BRCA2, and ATM. In 10 genes associated with germline 
risk for familial disease (the inherited risk gene panel), true 
somatic mutations in germline genes were discovered in 10 
lung cancer patients (11 variants) and 101 total patients (118 
variants) when using the tumor-only sequencing approach. 
It may be concluded that sequencing and analysis of data 
from the patient’s normal germline genome and tumor 
genome eliminates false positive results associated with 
analysis of tumor genome sequence data alone.

Tumor-only sequencing will result in the 
identification of all variation present in the genome within 
the sequenced region, including germline and somatic 
variants. The results show that unambiguous identification 
of the somatic variants is not possible without the normal 
germline DNA sequence. The problem of variant origin 
identification is also present when tumor-only sequencing 
is used for germline variant calling; however, germline 
variant reporting is usually restricted to pathogenic and 
likely pathogenic variants found in ClinVar or an equivalent 
database and a misidentification of a somatic variant as a 
germline variant will most likely occur among variants of 
unknown significance. Focusing on the ten genes in the 
Inherited Risk Gene Panel, 3% of all variants found among 
lung cancer and all cancer patients were somatic mutations 
(Table 1). Without normal germline sequencing data, the 
3% of variants that are somatic must be filtered from the 
germline variants if the goal is to identify inherited disease 
risk variants. Removing all variants that are not reported in 
dbSNP results in less than 1% of remaining variants within 
genes in the Inherited Risk Gene Panel being somatic for all 
cancer patients and lung cancer patients specifically.

To our knowledge, this is the first published study 
that assessed the increased precision achieved by adding 
RNA sequencing to a tumor-normal sequencing approach. 

The potential for tumor somatic SNVs to fruitfully inform 
patient treatment depends on expression of the DNA variants 
as messenger RNA, and then translation into protein. RNA 
sequencing of the tumor provides valuable information about 
relative expression levels of cancer driver genes, and the gene 
expression of specific tumor somatic variants [11–13]. RNA 
expression analysis in this study showed that 18% of true 
somatic mutations identified from tumor-normal sequencing 
of lung cancer patients, as well as 15% for all cancer patients, 
were not expressed at the level of messenger RNA. Analysis 
of true germline variants found that 9% and 11% of variants 
were not expressed among all cancer cases and lung cancer 
cases, respectively. The higher rate of unexpressed variants 
discovered in somatic versus germline is expected. Somatic 
mutations are novel to the cell and are more likely to result in 
transcriptional disruption or editing than germline mutations 
that have persisted through the life of the individual. Our 
results provide further evidence of the advantages associated 
with heightened precision of molecular analysis for drug 
targeting derived from tumor-normal DNA sequencing plus 
RNA sequencing.

The authors recognize that this study is limited by the 
number of lung cancer patients contributing variant data. 
Given that the tumors sequenced for this study were collected 
based on physician referral, they might not represent a true 
random sampling of the lung cancer population. Furthermore, 
clinical and demographic information to assess population 
representation was not available. 

Simultaneous sequencing and bioinformatics 
analysis of the DNA of both the normal germline 
genome and the tumor genome is necessary for accurate 
identification of molecular targets for cancer therapy. 
Analysis of only the tumor genome results in a high false 
positive rate in SNV identification. Even higher precision 
is achieved with simultaneous tumor-normal DNA and 
RNA sequencing analysis. Treatment decisions based 
on tumor-only DNA analysis or in the absence of RNA 
analysis might result in administration of ineffective 
therapies while also increasing risk of negative drug-
related side effects. When used to guide clinical decision-
making, the approach of tumor-only gene-panel analysis 
may increase risk to patients, cause potential long-term 
negative health consequences, and increase healthcare 
costs. 

MLH1 4 0 (0%) 0 1 0 (0%) 0
MSH2 5 0 (0%) 0 0 0 0
MSH6 7 1 (14%) 1 0 0 0
PMS2 10 0 (0%) 0 3 0 (0%) 0
POLD1 7 0 (0%) 0 0 0 0
POLE 16 1 (6%) 1 2 0 (0%) 0
STK11 7 0 (0%) 0 3 0 (0%) 0
Total 517 75 (15%) 51 unique 39 7 (18%) 6 unique
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MATERIALS AND METHODS

Patient samples

The patients that contributed samples that were 
used to generate the data used in this study had all 
provided informed consent to the use of their molecular 
information for research purposes. The patients had 
undergone genomic sequencing (whole genome tumor and 
normal DNA and tumor RNA) as part of an IRB approved 
research study or as prescribed by an authorized physician. 
The only selection criteria used for inclusion in the study 
was the completeness and quality of the genomic data and 
there were no exclusions based on tumor type, clinical or 
demographic factors. The study included 45 lung cancer 
patients and 621 total cancer patients with 30 different 
cancer types. The data are stored in the NantOmics, LLC 
database in a HITRUST certified environment. 

Sequencing data 

Whole genome sequencing data from tumor DNA, 
tumor RNA, and normal DNA of 621 cancer patients was 
analyzed to identify somatically-derived single nucleotide 
variants (SNVs) potentially contributing to cancer 
growth and expansion. Although all patients samples had 
undergone whole genome tumor and normal sequencing, 
this study focused on mutation analysis in 35 genes. The 
panel included 25 genes implicated as somatic tumor 
drivers (tumor driver gene panel) and 10 genes that are 
known to affect inherited cancer risk (inherited risk gene 
panel). The tumor driver gene panel consists of: ALK, 
BRAF, CDKN2A, CEBPA, DNMT3A, EGFR, ERBB2, 
EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KMT2A, KRAS, 
MET, NOTCH1, NPM1, NRAS, PDGFRA, PDGFRB, 
PGR, PIK3CA, PTEN, RET. The inherited cancer risk 
panel consisted of: APC, BMPR1A, EPCAM, MLH1, 
MSH2, MSH6, PMS2, POLD1, POLE, STK11.

DNA and RNA was extracted from preserved tissue 
and sequenced using the Illumina platform in a NantOmics 
Clinical Laboratory Improvement Amendments (CLIA)- 
and Certified Authorization Profession (CAP)-certified 
sequencing laboratory. Performance characteristics of the 
test used include > 95% sensitivity and > 99% specificity 
to detect SNVs transcribed and expressed as RNA. 
Normal germline and tumor genomes were sequenced to 
read depths of approximately 30× and 60×, respectively. 
Approximately 300 million RNA sequencing reads were 
generated for each tumor. 

Sequence alignment and variant calling

DNA sequencing data was aligned to GRCh37 
(www.ncbi.nlm.nih.gov/assembly/2758/) by BWA 
[14], duplicate-marked by samblaster [15], and indel 
realignment and base quality recalibration performed 

by GATK v2.3 [16]. RNA sequencing data is aligned by 
bowtie [17] and RNA transcript expression estimated by 
RSEM [18]. Tumor vs. matched-normal variant analysis 
was performed using the NantOmics Contraster analysis 
pipeline to determine somatic and germline SNVs, 
insertions and deletions, and identify highly amplified 
regions of the tumor genome [8–10]. 

Small variants were annotated with base-level 
PhastCons conservation scores, population allele 
frequencies from dbSNP (Build 142), and their predicted 
impact to gene transcripts downloaded from the RefSeq 
database (eg, changes in DNA sequence and protein). 

Data analysis

Variants counts from DNA and RNA were calculated 
from VCF files generated by the bioinformatics pipeline. 
The true germline and somatic status variable was 
determined from NantOmics Contraster analysis of tumor 
and normal DNA sequence data and subsequently used to 
stratify variant counts. Variables used for variant filtering 
were downloaded from the dbSNP public database (https://
www.ncbi.nlm.nih.gov/projects/SNP/). The calculations 
and data analysis presented in the Results section were 
carried out using Python, the R statistical package and C 
shell commands. 
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