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Introduction

A recent study of the mutation landscape of >3000 cancers across 
12 major cancer types from the Cancer Genome Atlas (TCGA) 
program revealed PIK3CA as the second most commonly mutated 
gene, occurring at >10% frequency in 8 types of cancer. Limited 
preclinical evidence suggested that mutations affecting PIK3CA
catalytic vs. non-catalytic domains can produce different phenotypic 
consequences in model systems; however, whether domain-specific 
PIK3CA mutations results in distinct pathway consequences across 
multiple cancer types remain unclear. Thus, we used the 
PARADIGM algorithm, which integrates gene expression and copy 
number data into a superimposed pathway structure, to infer the 
activities of ~13K pathway features and compared the signaling 
consequences associated with different domain-specific PIK3CA 
mutations within the TCGA Pan-Cancer dataset.

Differential pathway activation associated with domain-specific PIK3CA mutations
Abstract #4165

Dataset Characteristics

Bladder (BLCA)Serous Ovarian (OV)

Acute  Myeloid 
Leukemia  (AML)

Endometrial (UCEC)

Rectum (READ)

Lung Squamous (LUSC)
Lung Adenocarcinoma (LUAD)

Kidney Clear Cell (KIRC) 

Head and Neck 
Squamous 
(HNSC)

Colon (COAD)

Breast carcinoma 
(BRCA)

Glioblastoma
multiform (GBM)

 12 Cancer Types 
The TCGA Pan-Cancer 12 
Dataset comprises :

12 Cancer Types

3531 samples with PARADIGM 
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sequencing data
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2637 samples with inferred pathway activity and mutation 
data are available for our evaluation.
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PIK3CA Domain-Specific Mutations

I) Helical and kinase domain mutations account for 83% of 
samples harboring a single PIK3CA missense mutation.
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0.2%

22% of samples harbor 
PIK3CA mutations

94% of PIK3CA mutant 
samples harbor 
missense mutations
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Cancer Type Composition

447 samples from 11 cancer types with 
PIK3CA mutations mapping to a single 
domain are used to compare the pathway 
consequences associated with 
domain-specific mutations.

II) The distribution of PIK3CA mutations among the domains 
is significantly different across cancer types (χ2 test p<0.001).
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Distribution of PIK3CA 
mutations across domains 
in breast, head and neck 
and lung squamous 
cancers

Differential Pathway Activation

64% has hotspot 
mutations: H1047R, 
E545K or E542K  

Features associated with kinase domain mutations (vs. all others) were identified 
using logistic regression adjusting for cancer type (Wald test p<0.05).  Enriched 
pathways among significant features were assessed (FDR corrected EASE score < 
0.05).  Features and enriched pathways associated with helical domain mutations are 
similarly identified.  Interconnected features with significant domain-specific 
associations were visualized using Cytoscape.   

Method

V) Cell Motility

In contrast, pathways relating to cell motility (e.g. degradation of gap junctions) are 
enriched among features positively associated with helical domain mutations.  As 
well, inferred activity of RHO GTPases, known to regulate cancer cell motility, also 
show positive association with helical domain mutations.
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III) PI3K Catalytic Activity

As expected, the inferred activity of the PI3K catalytic subunit is positvely associated 
with mutations in the kinase domain.  Conversely, this activity, along with other PI3K 
complexes, shows negative association with helical domain mutations.
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IV) Proliferation
Inferred activation of 
cell cycle related 
pathways (e.g. 
FOXM1, PLK1) 
appears negatively 
associated with helical 
domain mutations. 
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In this study, we demonstrate that somatic mutations are distributed differently across 
the PIKCA domains among the TCGA Pan-Cancer 12 cancer types; and that helical 
and kinase domain mutations associate with distinct patterns of pathway activation.  
Altogether, our findings suggest that breast and kidney cancers may favor kinase 
domain mutations in order to enhance PI3K catalytic activity and drive proliferative 
processes.  In contrast, lung cancers and head-and-neck squamous cancers appear 
to favor helical domain mutations to preferentially enhance malignant cell motility.    

Conclusion


