Differential pathway activation associated with domain-specific PIK3CA mutations
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PIK3CA Domain-Specific Mutations

A recent study of the mutation landscape of >3000 cancers across
12 major cancer types from the Cancer Genome Atlas (TCGA)
program revealed PIK3CA as the second most commonly mutated
gene, occurring at >10% frequency in 8 types of cancer. Limited
preclinical evidence suggested that mutations affecting PIK3CA
catalytic vs. non-catalytic domains can produce different phenotypic
conseqguences in model systems; however, whether domain-specific
PIK3CA mutations results in distinct pathway consequences across
multiple cancer types remain unclear. Thus, we used the
PARADIGM algorithm, which integrates gene expression and copy
number data into a superimposed pathway structure, to infer the
activities of ~13K pathway features and compared the signaling
consequences associated with different domain-specific PIK3CA
mutations within the TCGA Pan-Cancer dataset.
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2637 samples with inferred pathway activity and mutation
data are available for our evaluation.
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I) Helical and kinase domain mutations account for 83% of
samples harboring a single PIK3CA missense mutation.
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I1) The distribution of PIK3CA mutations among the domains

is significantly different across cancer types (12 test p<0.001).
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Method

Features associated with kinase domain mutations (vs. all others) were identified
using logistic regression adjusting for cancer type (Wald test p<0.05). Enriched
pathways among significant features were assessed (FDR corrected EASE score <
0.05). Features and enriched pathways associated with helical domain mutations are
similarly identified. Interconnected features with significant domain-specific
associations were visualized using Cytoscape.
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As expected, the inferred activity of the PI3K catalytic subunit is positvely associated
with mutations in the kinase domain. Conversely, this activity, along with other PI3K
complexes, shows negative association with helical domain mutations.
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In contrast, pathways relating to cell motility (e.g. degradation of gap junctions) are
enriched among features positively associated with helical domain mutations. As
well, inferred activity of RHO GTPases, known to regulate cancer cell maotility, also
show positive association with helical domain mutations.

Conclusion

In this study, we demonstrate that somatic mutations are distributed differently across
the PIKCA domains among the TCGA Pan-Cancer 12 cancer types; and that helical
and kinase domain mutations associate with distinct patterns of pathway activation.
Altogether, our findings suggest that breast and kidney cancers may favor kinase
domain mutations in order to enhance PI3K catalytic activity and drive proliferative
processes. In contrast, lung cancers and head-and-neck squamous cancers appear
to favor helical domain mutations to preferentially enhance malignant cell motility.




