Abstract #11606

• Background
 - Immune therapies such as checkpoint inhibitors, CAR T cells, NK cells, and therapeutic vaccines are revolutionizing cancer medicine with remarkable responses in some patients.
 - Current clinical immunotherapy strategies include targeting tumor associated antigens (TAAs) such as HER2 (trastuzumab) or targeting immune cell checkpoints (ipilimumab, nivolumab)
 - Many patients fail to respond with these drugs suggesting a lack of specific immune cells or insufficient amounts of the TAAs.

- We analyzed whole genome sequencing (WGS) and RNA sequencing (RNAseq) data from The Cancer Genome Atlas (TCGA) to identify neoepitopes (tumor-specific antigens derived from mutations in cancer) that could be exploited to develop next-generation, patient-specific cancer immunotherapies.

• Methods
 - TCGA WGS and RNAseq data were obtained from the University of California, Santa Cruz (UCSC) Cancer Genomics Hub (https://cghub.ucsc.edu).
 - Neoepitopes were identified by creating all possible permutations of either 9-mer or 15-mer amino acid strings derived from single nucleotide variants (SNVs) or insertions/deletions (indels).
 - All neoepitopes were filtered against all possible 9-mer and 15-mer amino acid sequences from every known human gene along with alignments to the IMGT/HLA database.
 - Neoepitopes were identified by creating all possible permutations of either 9-mer or 15-mer amino acid strings derived from single nucleotide variants (SNVs) or insertions/deletions (indels).
 - All neoepitopes were filtered against all possible 9-mer and 15-mer sequences from every known human gene along with alignments to the IMGT/HLA database.

• Results
 - Neoepitope Counts
 - High Neoepitope Burden Gives Rise to More Expressed Neoepitopes
 - Tissue Typing and Predicting MHC Presentation from Whole Genome and RNA Sequencing Data

• Conclusions
 - Most identified neoepitopes are patient-specific.
 - Neoepitope-MHC interactions restrict commonly more shared mutations.
 - Development of personalized immunotherapies is dependent on accurate DNA and RNA sequencing.

Acknowledgement

We would like to thank Elham Bazar, PhD, at Nanomics LLC for writing assistance.

Contact

Corresponding Author:

Andy Nguyen, 1 J Zachary Sanborn, 1 Charles J Vaske, 1 Shahroz Rabizadeh, 2 Kayvan Niazi, 2 Patrick Soon-Shiong, 3,2 Steven C Benz 1,1

1 Nanomics LLC, Santa Cruz, CA; 2 Nanomics LLC, Culver City, CA; 3CSS Institute of Molecular Medicine, Culver City, CA.

© 2016 Nanomics LLC. All Rights Reserved.