High Levels of HER2 Measured By Multiplex Mass Spectrometry Correlate With Increased Overall Survival In Patients Treated With Anti-HER2 Therapy

Paolo Nuciforo1, Sheeno Thayparambil2, Ana Garrido-Castro2, Marta Villaro1, Vicente Peg2, Ludmila Prudkun1, Jose Jimenez2, William Hoos3, Jon Burrows4, Todd Bembrough5, Jose Perez-Garcia1, Javier Cortes1, Mauricio Scattoni6, *Molecular Oncology Laboratory, Vall d’Hebron Institute of Oncology, Barcelona, Spain, 1OncoPlex Diagnostics, Rockville, MD, 2Department of Oncology, Vall d’Hebron University Hospital, Barcelona, Spain, 3Department of Pathology, Vall d’Hebron University Hospital, Barcelona, Spain, 4Memorial Sloan-Kettering Cancer Center, New York, NY, 5Department of Pathology, Vall d’Hebron University Hospital, Barcelona, Spain, 6Memorial Sloan-Kettering Cancer Center, New York, NY. The research has been funded by the Tumor Biomarkers Collaboration supported by the Banco Bilbao Vizcaya Argentaria (BBVA) Foundation.

Background

There is evidence that increased absolute levels of HER2 receptor in breast cancer positively correlated with a clinical benefit from anti-HER2 therapies. Current methods of HER2 evaluation are essentially based on semiquantitative immunohistochemistry (IHC) assays that do not allow for absolute HER2 quantification in formalin fixed and paraffin embedded (FFPE) clinical samples. Thus, a significant portion of patients are classified as HER2-positive (IHC 3+) but actually express low levels of the receptor. We hypothesized that the benefit from trastuzumab or other anti-HER2 therapies is lower in this subgroup of patients compared to those with higher receptor levels.

Methods

Sample population

- 60 FFPE primary breast cancer HER2-positive by IHC (3+) previously treated with anti-HER2 therapy
- Patients receiving an anti-HER2 treatment in either adjuvant or metastatic settings.

Quantitative Multiplex Mass Spec Assay

Liquid Tissue-selected reaction monitoring (LT-SRM) workflow analysis of FFPE tissue. Tumor was microdissected using laser micro-dissection and then solubilized to tryptic peptides using Liquid-Tissue® technology. Absolute quantitation was accomplished through the use of heavy labeled peptides identical to endogenous analytical targets (HER2, Her3, EGFR, IGF1R, GFR, etc.) and simultaneous detection of endogenous target and synthetic labeled heavy peptide using triple quadrupole mass spectrometer.

Absolute amounts of HER2 Expression as quantified by mass spectrometry: Absolute HER2 quantification by LT-SRM shows high variability of HER2 expression within a patient population commonly classified homogeneously as 3+ by IHC.

Sample population

- 26 HER2-positive (IHC 3+), 17 with follow-up, 36 anti-HER2 adjuvant setting,
- 32 HER2-negative (IHC 0-1+), 15 with follow-up, 17 with anti-HER2 adjuvant setting.

Multivariate Cox Model of DFS including Hormone receptors (HR), tumor grade, T and N status, and HER2 in adjuvant setting. High HER2 levels are an independent predictor of increased DFS in patients receiving an anti-HER2 treatment.

Conclusions

- HER2 protein levels as measured by mass spectrometry significantly vary within HER2 IHC-positive tumors.
- High HER2 protein levels is associated with longer DFS and OS in patients receiving an adjuvant anti-HER2 treatment.
- High HER2 protein levels are an independent predictive factor of response to anti-HER2 treatment in adjuvant setting.
- High HER2 protein levels is associated with longer OS in patients receiving an anti-HER2 as first-line metastatic treatment.
- This cut-off value is currently being tested in an independent set to validate this observation.