Quantification of MET Expression Using Mass Spectrometry (MS): Assay Precision and Stability in FFPE Tumor Tissue

Todd Hembrough1, Wei-Li Liao1, Sheeno Thyparambil1, Les Henderson2, Brittany Rambo2, Fabiola Ceczko1, Donald Bottaro3, Kathleen Bengali1, Jamar Uzzell1, Marlene Darler1, Peng Xu2, Shu-Yuan Xiao3, Lei Zhao4, David Krizman1, Timothy Veenstra1, Jon Burrows1, and Daniel Catennaci2

1OncoPlex Diagnostics Inc., Rockville, MD, 2University of Chicago, Department of Medicine, Section of Hematology & Oncology, Chicago, IL, 3Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, and 4University of Chicago, Department of Pathology, Chicago, IL

Overview

- Overexpression of MET in gastrointestinal cancer (GEC) is associated with poor prognosis and potentially predictive of anti-MET therapy. Immunohistochemistry (IHC) is currently used to determine patient eligibility for ongoing MET-specific trials.
- However, IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue.
- Successful MET IHC is hampered by antigen instability in FFPE sections, limiting its utility to recently cut FFPE sections.
- We developed a clinically-validated multiplex MS assay to measure MET protein level in FFPE GEC tissue.
- We are running the assay in a CLIA-certified, CAP-accredited laboratory to concurrently assess protein expression levels for MET and other diagnostic and potentially targetable biomarkers, e.g., EGFR, HER2, HER3, RON, KRAS, IGFIR, and PD-L1.

Methods

- FFPE tumor block
- Consecutive tissue sectioning (10 µm)
- FFPE sections stored in RT
- Microdissected and Liquid Tissue-processed
- 1st section
- 2nd section
- Microdissected and Liquid Tissue-processed
- One Year Later
- Block of Tissues
- Protein-Layer Removed from Tissue Tissues
- Tumor Tissue Blocks
- Quantitation of Protein
- Upper Timepoint: One-year-Old Sample
- Analytical performance MET Assay
- Spiked Light (amol)
- Recovered Light (amol)
- LOD: 150 amol
- LLOQ: 200 amol
- y = 0.9627x + 80.025
- R² = 0.9998

Results

- SRM Assay is Highly Concordant with Antibody-based ECL Assay
- SRM Quantitative Reproducibly from Archival FFPE Sections
- SRM Measurement is Highly Concordant with MET Copy Number or MET/CEP7 Ratio
- Quantitation of MET in Clinical FFPE GEC Tumors

Conclusions

- We have developed a mass spectrometry-based assay to measure the absolute level of MET in clinical FFPE tumor tissues with high level of specificity and temporal stability, and quick turn around time (5 days from time of tissue receiving).
- The SRM assay is able to detect MET amplified samples with high sensitivity and specificity as compared to FISH.
- The ability to concurrently quantify MET and other relevant proteins represents a novel clinical tool for efficient tumor expression profiling, potentially leading to better informed therapeutic decisions for patients with GEC.

Figure 1: Liquid Tissue®-SRM workflow for analysis of proteins from FFPE tissue.

Figure 2: Calibration curve of MET in eukaryotic cell lines. The calibration curve was built by adding various concentrations (eight non-zero points from 150 amol to 25,000 amol) of unblended (light) synthetic MET peptide into a matrix obtained from formalin-fixed SKBR3 cells containing 5 fmol of isotopically-labeled MET peptide.

Figure 3: Comparison of MET levels measured in five cell lines using SRM and ECL immunoassay. Overall there was good correlation of the measurements provided by LT-SRM and ECL (R²=0.9975 when all 5 cell lines were compared and R²=0.7162 when the four cell lines containing the lowest concentration of MET were compared as shown in inset).

Figure 4: Temporal reproducibility of FFPE tissues processed and analyzed using LT-SRM over one year apart. The R² between these two groups of samples was 0.8161 demonstrating that the LT-SRM process provides reproducible results for archival FFPE sections up to 13 months prior to analysis.

Figure 5: Comparison of MET protein level and MET gene copy number in GEC tissues (N=30). The MET SRM result is plotted against MET genomic (blue) or MET/CEP7 ratio (Red). The R² between the two sets of measurements were 0.8291 when SRM was compared to MET copy number per nucleus and 0.8982 when SRM and MET/CEP7 ratio were compared.

Figure 6: SRM analysis of FFPE GEC tumors (N=130). MET levels were above the LOD in 46 of the ADC tumors (35.4%). The range of values detected in the ADC tumors was between 189-4669 amol/µg. Red and green highlighted represent samples subjected to FISH test. Red: MET amplified samples (MET/CEP7≥2) and green: FISH negative.

Table 1: Summary for MET expression in GEC tumors (N=130). Upper table shows that 5.4% of GEC have MET level >1500 amol (7/130). Using this value (>1500 amol/µg) as the cut off, the MET assay reliably detected MET amplified GEC tumors with 100% sensitivity and 100% specificity (shown in lower table).

Figure 7: Expression levels of multiple “actionable” biomarkers in three selected GEC tissues. Multiplex SRM assay maximizes information in limited tissue, leading to a better personalized patient care.