

Clinical mass spectrometry-based proteomics unlocks personalized medicine potential from bone metastases

Fabiola Cecchi¹, Shankar Sellappan¹, Sarit Schwartz¹, Steven W Mamus², Todd Hembrough¹ ¹NantOmics, Research and Development, Rockville, Maryland, USA; ²Cancer Center of Sarasota-Manatee, Sarasota, Florida, USA

Background

- Bone metastases are rarely used to guide therapy choice; decalcification of bone destroys protein and tissue antigenicity, often precluding traditional molecular analysis.
- Tumors and their bone metastases are biologically distinct; therapies targeted to primary tumors are often ineffective against metastatic lesions.
- We assessed the effects of decalcification on proteomic analysis of tumor tissue using targeted mass spectrometry.
- We also quantified therapeutically-relevant proteins in decalcified bone metastases of cancer patients using mass spectrometry-based proteomics.

Material & Methods

FFPE tumor tissue

Figure 1. Non-bone tissue specimens were processed with and without Decal-Stat[™] decalcification solution prior to targeted tumor cell microdissection and mass spectrometric analysis.

Figure 2. Multiplexed proteomics analysis workflow using Liquid Tissue [™] enabled targeted selected reaction monitoring (SRM) mass spectrometry.

Figure 3. Analytical performance of EGFR assay: the amount of EGFR light peptide recovered (amol) was plotted against the amount of light peptide spiked (amol) to create a concentration curve.

© 2016 NANTWORKS, LLC. All Rights Reserved.

Results

Laser microdissection of bone metastasis biopsies

Tumor marked for microdissection Tumor sample post microdissection Figure 4. Microdissection images of FFPE bone biopsy tissue section marked before and after non-contact laser microdissection of targeted tumor cells.

Proteomics unaffected by decalcification conditions

non-bone tumor tissues (n=2) of 4 protein markers..

Chemotherapy	Resistance	ERCC1, TUBB3, RRM1, MGMT
protein markers	Response	FRa, hENT1, SPARC, TOPO1, TOPO2A
Targeted therapy protein markers	Response: approved	ALK, AR, EGFR, HFR2 PDI 1
	therapies	ROS1
	Response: agents in clinical trials	AXL, FGFR2, HER3, IGF-1R, MET, MSLN, RON
Diagnostic protein	Lung	CK7, TTF1, CK5, TP63
markers	HDV infection	D16

Table 1. Multiplexed clinical proteomic menu

Predicted therapeutic benefit of chemotherapies as measured by protein expression in bone metastases of NSCLC patients

	Patient							
Protein marker	1	2	3	4	5	6	7	Treatment agent
AR								Anti-Androgens
ERCC1								Platinums
FRalpha								Pemetrexed/MTX
hENT1								Concitabino
RRM1								Geniciabilie
TOP01								Irinotecan
TOPO2A								Anthracyclines
TUBB3	\mathbf{X}	X	\times					Taxanes

Relative level of therapeutic benefit

Not measured
 Not measured
 Renefit or lack of
 resistance
 or resistance

Figure 6. Normalized expression levels of protein markers from decalcified bone metastases of NSCLC patients as measured with SRM mass spectrometry.

Predicted changes in therapeutic response in metastases vs primary

Br€	Breast cancer primary with metastasis to the iliac bone					
Protein	Quantity (amol/µg)		Treatment implication			
marker	Primary	Mets	Treatment implication			
ERCC1	ND	127	May have become platinum resistant			
TOPO1	745	1585	May now respond to			
			irinotecan/topotecan			
TOPO2A	ND	545	May respond to anthracyclines			

 Table 2. Difference in protein expression levels between primary tumor and decalcified bone metastasis.

Mandible primary with metastasis to lymph nodes of neck					
Protein	Quantity (amol/µg)		Tractment implication		
marker	Primary	Mets	meannent implication		
ERCC1	ND	176	May have become platinum resistant		
RRM1	ND	336			
TUBB3	1805	ND	May now respond to taxanes		
TOPO2A	ND	1205	May now respond to anthracyclines		
TOPO1	ND	1100	May now respond to		
			irinotecan/topotecan		
EGFR	980	125	May now be less responsive to anti-		
			EGFR agents		

 Table 3. Difference in protein expression levels between decalcified primary bone tumor and non-bone (lymph node) metastasis.

Conclusions

- Decalcifying solution had no discernable effects on proteomic quantification of biomarker proteins in archived tumor samples.
- Targeted proteomics quantified an entire panel of therapeutically-relevant proteins from a single decalcified bone biopsy specimen.
- Proteomic analysis of bone metastases upon diagnosis of metastasis or at relapse could inform treatment decisions, particularly in patients with disease progression only in bone lesions or whose bone biomarkers are discordant from those of the primary tumor.

EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics Symposium, 29 Nov – Dec 2, 2016, Munich, Germany